Supporting Information

Dimeric Prodrug Self-Delivery Nanoparticles with Enhanced

Drug Loading and Bioreduction-Responsiveness for

Targeted Cancer Therapy

Xi He ^a, Kaimin Cai ^b, Yu Zhang ^a, Yifei Lu ^a, Qin Guo ^a, Yujie Zhang ^a, Lisha Liu ^a, Chunhui Ruan ^a, Qinjun Chen ^a, Xinli Chen ^a, Chao Li ^a, Tao Sun ^a, Jianjun Cheng ^{b,*}, Chen Jiang ^{a,*}

^a Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, People's Republic of China; State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200031, People's Republic of China;

^b Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States

^{*}Corresponding authors.

^{*}jiangchen@shmu.edu.cn

^{*}jianjunc@illinois.edu

Scheme S1. Synthesis route of CPTD

Scheme S2. Synthesis route of CPTD-PEG₅₀₀₀ and NT-PEG₅₀₀₀-CPTD

Scheme S3. Proposed release mechanism of redox-responsive drug release

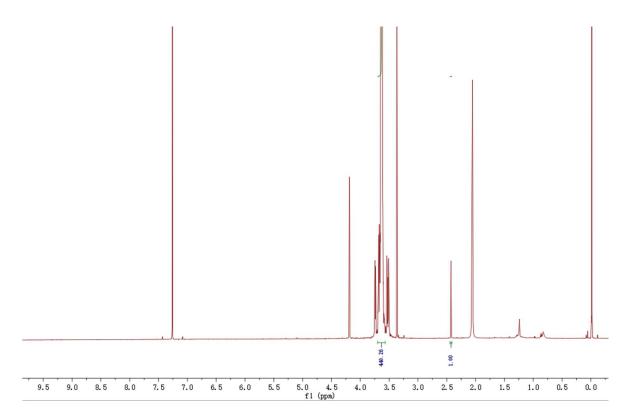


Figure S1. ¹H NMR of alkyne-PEG₅₀₀₀

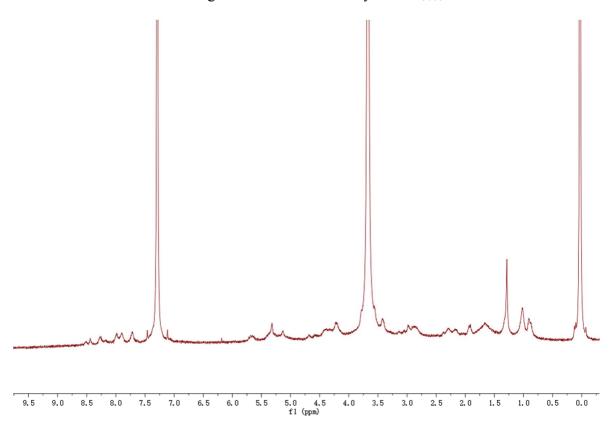


Figure S2. ¹H NMR of CPTD-PEG₅₀₀₀

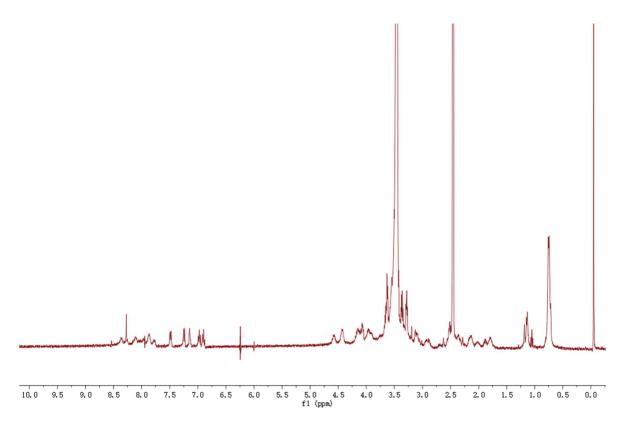


Figure S3. 1 H NMR of NT-PEG₅₀₀₀-CPTD

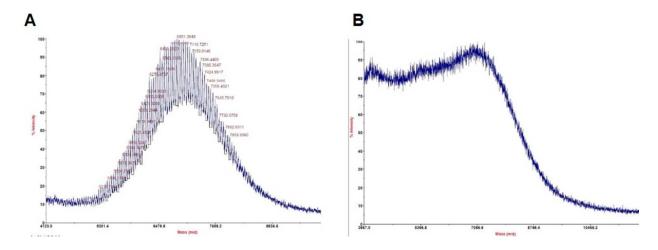


Figure S4. MALDI-TOF of CPTD-PEG $_{5000}$ (A) and NT-PEG $_{5000}$ -CPTD (B)

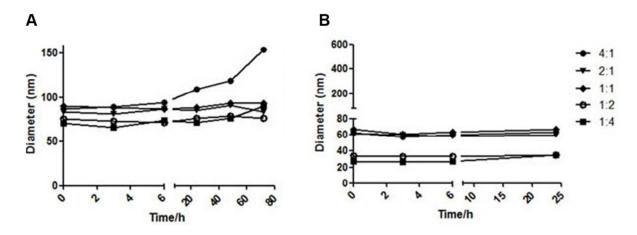


Figure S5. (A) Particle size change of CPTD NPs with different CPTD/CPTD-PEG₅₀₀₀ weight ratio incubated with PBS for 72 h. (B) Particle size change of CPTD NPs with different CPTD/CPTD-PEG₅₀₀₀ weight ratio incubated with FBS for 24 h.

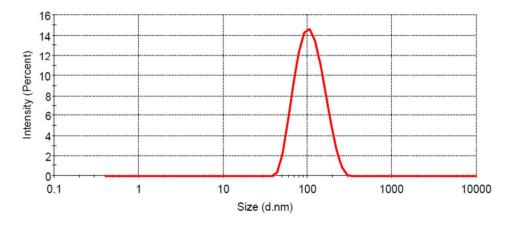


Figure S6. Particle size of CPTD NPs diluted with DI water at concentration of 0.75 μg/ml

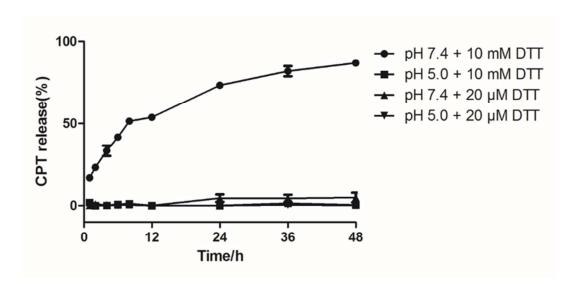


Figure S7. *In Vitro* CPT release from NT-CPTD triggered by different concentrations of DTT in PBS 7.4 or PBS 5.0 at 37 \square . Data were presented as means \pm SD (n = 3).

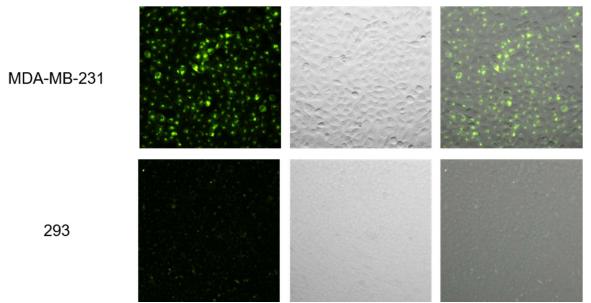


Figure S8. Cellular uptake of NT-CPTD NPs in NSTR1-positive MDA-MB-231 cells and NTSR1-negative 293 cells

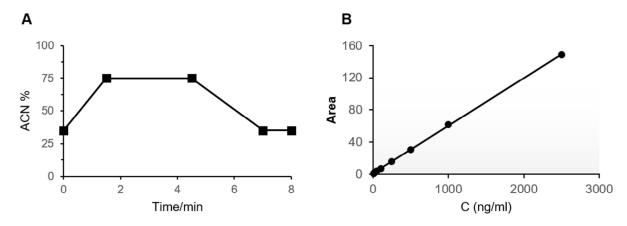


Figure S9. (A) HPLC method for CPT analysis. (B) HPLC Standard curve of CPT based on fluorescence (λ_{em} =369 nm, λ_{ex} =442 nm) (R^2 =0.9997)

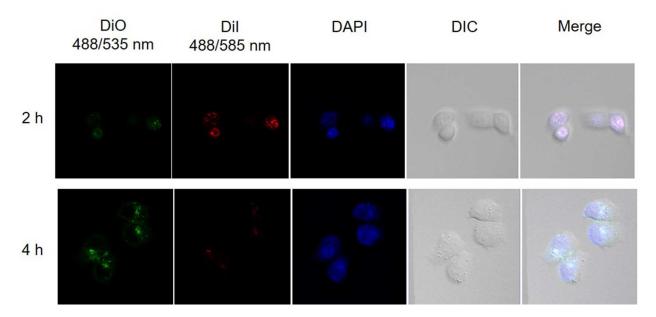


Figure S10. Confocal images of CPTD/CPTD-PEG₅₀₀₀ FRET NPs incubated in MDA-MB-231 cells for 2 h and 4 h. $\lambda_{ex} = 488$ nm, λ_{em} (DiO) = 535 \pm 20 nm, λ_{em} (DiI) = 585 \pm 20 nm. Fluorescence of DiI could be observed only when DiO and DiI are co- encapsulated in the NPs. All images were visualized via 63×oil immersion lens.

	PBS 7.4 Size (nm)		10 % FBS-containing buffer Size (nm)		PBS 6.5 Size (nm)	
	0 h	24 h	0 h	24 h	0 h	24 h
CPTD NPs	85.2±2.4	89.7±5.3	105.3 ± 1.3	105.7 ± 0.8	89.2±5.0	94.1±3.3
NT-CPTD NPs	95.7±1.7	92.1±0.5	106.0±2.8	105.2 ± 1.8	94.0±0.8	91.8±0.5

Table S1. Size distribution of CPTD NPs and NT-CPTD NPs incubated in PBS 7.4, 10 % FBS-containing PBS 7.4 buffer and PBS 6.5 for 24 h.