Ring-Opening Polymerization-Mediated Controlled Formulation of Polylactide-Drug Nanoparticles

Rong Tong and Jianjun Cheng*

Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801

Supplementary Figure 1: Determination of whether Doxo is deleteriously affected by (BDI)ZnN(TMS)₂ during the initiation steps.

Figure S1 HPLC analysis of (a) Doxo treated with (BDI)ZnN(TMS)₂ and (b) Doxo treated without (BDI)ZnN(TMS)₂. ESI-MS analysis of Doxo treated (c) with (BDI)ZnN(TMS)₂ and (d) without (BDI)ZnN(TMS)₂.

Experimental: In a glove box, Doxo (5.8 mg, 0.01 mmol) was mixed with (BDI)ZnN(TMS)₂ (6.4 mg, 1.0 equiv.) in 300 μ L of THF. The mixture was stirred for 15 min at room temperature, and then 200 μ L of methanol and 50 μ L acetic acid were added to the mixture to dissociate the BDI-metal complex from Doxo. The solution was stirred at room temperature for an additional 30 min. All solvents were then evaporated under vacuum. The residue was reconstituted with a mixture of acetonitrile and methanol (v/v = 1/1) and analyzed by HPLC (trace a). Doxo treated similarly but without (BDI)ZnN(TMS)₂ was used as a control (trace b). These two Doxo samples, treated with and without (BDI)ZnN(TMS)₂, were also analyzed by high resolution ESI-MS (trace c and d, respectively). High resolution ESI-MS results: For (c) Doxo treated with (BDI)ZnN(TMS)₂, MS (HR-ESI): calcd. for C₂₇H₃₀NO₁₁ [M + H]⁺ *m/z* 544.1819, found *m/z* 544.1832. For (d) the Doxo control (Doxo treated without (BDI)ZnN(TMS)₂), MS (HR-ESI): calcd. for C₂₇H₃₀NO₁₁ [M + H]⁺ *m/z* 544.1819, found *m/z* 544.1829.

Supplementary Figure 2: Demonstration that Doxo is released in its original form from PLA-Doxo NC.

Figure S2. HPLC analysis of the authentic Doxo (red trace) and the Doxo released from Doxo-LA₁₀ after incubation in $1 \times$ PBS at 37°C for 10 days (black trace). The spectra were recorded on a System Gold 128 UV detector between 200 and 600 nm (Beckman Coulter, Fullerton, CA).

Supplementary Figure 3 Succinic anhydride (SA), as the analogue of LA, was used to assess if the C14-hydroxyl group of Doxo preferentially initiates the LA polymerization in the presence of (BDI)ZnN(TMS)₂.

(c) Chemical Shift

δ	а	b	C	d	е	f	g	h	i	j	m	n
Doxo	1.16	1.68,1.90	2.82, 2.95	2.08, 2.18	3.34	3.96	4.59	4.19	3.61	4.88	/	/
Doxo-14-SE	1.1	1.80-2.10	2.90, 3.05	2.00-2.20	3.38	4.11	5.28	4.09	3.49	4.76	2.35	2.62

Figure S3. (a) Schematic illustration of the anticipated ring opening of succinic anhydride (SA) by the C14-OH of Doxo when SA was treated with $Doxo/(BDI)ZnN(TMS)_2$. (b) ¹H NMR analysis (DMSO-d₆) of Doxo and Doxo-succinic ester (Doxo-SE) to confirm the attachment of SE to the C14-OH of Doxo and formation of Doxo-SE. (c) ¹H NMR chemical shifts of Doxo and Doxo-SE. (d) HPLC analysis of (i) the reaction mixture of SA (1 equiv.) and $Doxo/(BDI)ZnN(TMS)_2$ (1/1.2 molar ratio) and (ii) Doxo-SE incubated in 1× PBS solution at 37°C for 48 h. (e) ESI-MS analysis of the compound derived from the reaction of SA with $Doxo/(BDI)ZnN(TMS)_2$ (i, Figure S3d).

Experimental procedures:

In a glove box, Doxo·HCl (2.0 mg, 0.0035 mmol) was mixed with (BDI)ZnN(TMS)₂ (2.4 mg, 1.2 equiv.) in THF (200 μ L) for 30 min. The solvent was then evaporated. Freshly recrystallized SA in THF solution (0.41 mg, 1.2 equiv) was added dropwise to the mixture of (BDI)ZnN(TMS)₂ and Doxo and stirred for an additional 60 min. The reaction was monitored by HPLC. Separation and purification of Doxo-SE were conducted on a HPLC equipped with an analytical C18 column (Luna C18, 250 × 4.6 mm, 5 μ , Phenomenex, Torrance, CA). The fractions containing Doxo-SE were combined, lyophilized and dissolved in anhydrous DMSO-d₆ for NMR analysis on a UI500NB system. The high resolution ESI-MS analysis of Doxo-SE was performed on a Micromass Q-TOF Ultima system. MS (HR-ES): calcd. for C₃₁H₃₄NO₁₄ [M + H]⁺ *m/z* 644.1979; found *m/z* 644.1987.

Supplementary Figure 4. HPLC was used to monitor Gos-initiated LA polymerization and release of Gos from Gos-PLA using NaOH.

Figure S4. HPLC analysis of the free Gos (trace i, black), the solution for the polymerization of LA (100 equiv.) mediated by $Gos/(BDI)MgN(TMS)_2$ (trace ii, red) and the solution of Gos-LA₁₀₀ treated with 0.1 NaOH (trace iii, blue). HPLC analysis clearly showed that Gos could be efficiently incorporated to PLA (ii) and released from Gos-LA₁₀₀ to its original form.