Supporting information

Drug-Mediated, Controlled Ring-Opening Polymerization for the Synthesis of Polymer-Drug Conjugates

Rong Tong, Jianjun Cheng*

Entry	[LA]/[Ptx1]	Conv. (%)	$M_{\rm exp}(\times 10^3 {\rm g/mol})$	$M_{\rm n}$ (× 10 ³ g/mol)	MWD $(M_{\rm w}/M_{\rm n})$
1	50	>99%	8.1	7.8	1.04
2	75	>99%	11.7	9.6	1.09
3	100	>99%	15.3	12.7	1.03
4	200	>99%	29.7	28.1	1.02

44.1

Table S1. Ptxl / (BDI-II)ZnN(TMS)2-mediated ROP of LA^a

>99%

5

300

^aAll reactions were performed in anhydrous THF with $[LA]_0 = 0.69$ M. Abbreviations: Conv. = conversion; M_{exp} , expected MW; MWD = molecular weight distribution; Ptxl = paclitaxel. LA conversion was measured by FT-IR. Incorporation efficiency was determined by reversed-phase HPLC analysis of unreacted Ptxl. M_n and MWD were determined by GPC.

35.2

1.03

Entry	[LA]/[Dtxl]	Conv. (%)	$M_{\rm exp}(imes 10^3 { m g/mol})$	$M_{ m n}$ (× 10 ³ g/mol)	MWD $(M_{\rm w}/M_{\rm n})^{\rm c}$
1	75	>99%	11.6	8.9	1.05
2	100	>99%	15.2	13.6	1.04
3	200	>99%	29.6	25.2	1.03
4	300	>99%	44.0	47.1	1.04
5	400	>99%	58.4	55.3	1.13

Table S2. Dtxl / (BDI-II)ZnN(TMS)₂-mediated ROP of LA^a

^aAll reactions were performed in anhydrous THF with $[LA]_0 = 0.69$ M. Abbreviations: Conv. = conversion; M_{exp} , expected MW; MWD = molecular weight distribution; Dtxl = docetaxel. LA conversion was measured by FT-IR. Incorporation efficiency was determined by reversed-phase HPLC analysis of unreacted Dtxl. M_n and MWD were determined by GPC.

Entr y	Initiat or (R)	Mono mer	[M]/[R]	Catalys t ligand	Time (h)	Temp. (°C)	Conv. (%)	Incop eff. (%)	$\begin{array}{c} M_{\rm n} / \\ M_{\rm exp} (\times \\ 10^3 \\ {\rm g/mol}) \end{array}$	$\begin{array}{c} \text{MWD} \\ (M_w/M_{\rm n}) \end{array}$
1	Ptxl	CL	100	BDI-II	10	r.t.	>99	>99	11.9 / 12.3	1.14
2	Ptxl	CL	200	BDI-II	10	r.t.	>99	>99	20.3 / 23.7	1.07
3	Ptxl	CL	300	BDI-II	10	r.t.	>99	>99	27.5 / 35.1	1.15
4	Ptxl	CL	100	BDI- IICN	10	r.t.	>99	>99	13.0 / 12/3	1.10
5	Ptxl	CL	200	BDI- IICN	10	r.t.	>99	>99	26.2 /	1.07
6	Dtxl	CL	100	BDI-II	10	r.t.	>99	>99	11.2 /	1.05
7	Dtxl	CL	200	BDI-II	10	r.t.	>99	>99	20.9 /	1.15
8	Dtxl	CL	300	BDI-II	10	r.t.	>99	>99	38.4 / 35.0	1.13
9	Ptxl	VL	100	BDI-II	12	r.t.	>99	>99	15.1 /	1.17
10	Ptxl	VL	200	BDI-II	12	r.t.	>99	>99	23.1 /	1.18
11	Ptxl	VL	300	BDI-II	12	r.t.	>99	>99	31.2 /	1.18
12	Dtxl	VL	100	BDI-II	12	r.t.	>99	>99	14.2 /	1.15
13	Dtxl	VL	100	BDI-	12	r.t.	>99	>99	10.7	1.13
14	Ptxl	TMC	100	BDI-II	6	50	>99	>99	10.7	1.10
15	Ptxl	TMC	200	BDI-II	6	50	>99	>99	27.6 /	1.21
16	Ptxl	TMC	300	BDI-II	6	50	>99	>99	21.3 49.2 /	1.21
17	Ptxl	TMC	100	BDI-	6	50	>99	>99	31.5 18.1	1.10
18	Dtxl	TMC	100	IICN BDI-II	6	50	>99	>99	/11.1 12.6 /	1.23
19	Dtxl	TMC	200	BDI-II	6	50	>99	>99	11.0 25.9 / 21.3	1.19

Table S3. Ptxl (or Dtxl) / (BDI-II)ZnN(TMS)2-mediated ROP of VL, TMC, and CL^a

^aAll reactions were performed in anhydrous THF with [monomer]₀ = 0.69 M. Abbreviations: Conv. = conversion; Dtxl = docetaxel; Incorp. eff. = incorporation efficiency; M_{exp} , expected MW; MWD = molecular weight distribution; Ptxl = paclitaxel. Monomer conversion was measured by FT-IR. Incorporation efficiency was determined by reversed-phase HPLC analysis of unreacted Ptxl (or Dtxl). M_n and MWD were determined by GPC.

Figure S1. HPLC spectrum of (a) free Ptxl and (b) the solution of Ptxl / (BDI-II)ZnN(TMS)₂-mediated LA polymerization at a LA/Ptxl ratio of 100. An aliquot (30-50 μ L) of polymerization solution was injected into HPLC equipped with analytical RP-HPLC column (Curosil-PFP, 4.6 × 250 mm, 5 μ , Phenomenex, Torrance, CA). Mobile phase was acetonitrile/water with 0.1% TFA (50/50 (v/v)); the flow rate was set at 1.0 mL/min.

Figure S2. ESI-MS analysis of Ptxl-LA₅. Ptxl-LA₅ was prepared by Ptxl/(BDI-II)ZnN(TMS)₂ (1/1 molar ratio).

Figure S3. Overlay of GPC chromatogram of $Ptxl-TMC_{200}$, $Ptxl-VL_{200}$ and $Ptxl-CL_{200}$. All reactions were mediated by $Ptxl/(BDI-II)ZnN(TMS)_2$

Figure S4. ¹H-NMR spectrum of Ptxl-CL₁₀₀. Inset: magnified spectrum. The small peaks indicated the Ptxl conjugated onto the polymer.

Figure S5. ¹H-NMR spectrum of $Ptxl-VL_{100}$. Inset: magnified spectrum. The small peaks indicated the Ptxl conjugated onto the polymer.

Figure S6. ¹H-NMR spectrum of Ptxl-TMC₁₀₀. Inset: magnified spectrum. The small peaks indicated the Ptxl conjugated onto the polymer.