Photoinduced Metal-Free Atom Transfer Radical Polymerization of Biomass

Based Monomers

Jifu Wang,^{1,2} Liang Yuan,³ Zhongkai Wang,² Md Anisur Rahman,² Yucheng Huang,² Tianyu Zhu,² Ruibo Wang,³ Jianjun Cheng,³ Chunpeng Wang,¹ Fuxiang Chu^{1*} and Chuanbing Tang^{1*}

¹Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Laboratory on Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; ²Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA; ³Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

*Corresponding Author Email: <u>tang4@mailbox.sc.edu</u>, <u>chufuxiang@caf.ac.cn</u>

Supporting Information

Scheme S1. Metal-free ATRP of biomass based monomers

Figure S1. Semilogarithmic kinetic plots of polymerization of SBMA with metal-free ATRP with [SBMA]/[EBPA]:[Catalyst]=100, 50 or 20:1:0.1.

Entry	[FMA]:[EBPA]: [catalyst]	Conv. (%)	M _n in theory ^d	M _n by GPC	Ð
S1 ^b	50:0:0	17	N/A	107.1 k	1.64
S2°	50:0:0	0	N/A	N/A	N/A
S3	50:0:0	0	N/A	N/A	N/A
S4 °	50:1:0.1	19	1.9 k	2.3 k	1.21
S5	50:1:0.1	31	3.1 k	2.6 k	1.31
S6	20:1:0.1	25	1. 1 k	2.5 k	1.29

Table S1. Optimization of photoinduced ATRP of FMA^a

^a Reaction conditions: FMA (20, 50 or 100 equiv), EBPA (1 equiv), PTH (0.1 equiv), FMA/THF = 1:2 (v/v), 4 h, at room temperature with irradiation by 380 nm UV light (LED strips with 0.05 mW/cm UV light intensity); ^b Irradiation by 2.2 mW/cm UV light; ^c Irradiation by visible light (with 0.07 mW/cm UV light intensity).^d Calculated based on conversion obtained by ¹H NMR.

Figure S2. Semilogarithmic kinetic plots of polymerization of FMA with metal-free

ATRP under condition [FMA]/[EBPA]= 50 or 20:1.

Figure S3. Preparation of PFMA with metal-free ATRP of FMA (Table 2, entry 4) (a) conversion vs time with repeated "on-off"; (b) number-average molecular weight (M_n) and dispersity (M_w/M_n) vs conversion with repeated "on-off".

Figure S4. Semilogarithmic kinetic plots of polymerization of DAEMA with metalfree ATRP under condition [DAEMA]:[EBPA]= 50 or 20:1.

Figure S5. DAEMA conversion vs time with light "on-off" (Table 2, entry 5).

Figure S6. (a) ¹H NMR spectra of PSBMA₂₇-*b*-DAEMA₉₈ (Table 3, entry 2); (b) ¹H

NMR of PFMA₃₆-*b*-PSBMA₁₁ (Table 3, entry 3).

Figure S7. FTIR spectra (a) homopolymers; (b) diblock copolymers.

Figure S8. DSC curves of homopolymers.